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Abstract Environmental variation can be due to
macro- and microenvironments. Whereas macroenviron-
ments, such as climate, density, and nutritional levels,
are distinguishable, microenvironments including ex-
ternal random errors or internal “accidents” of an or-
ganism cannot be well specified. A quantitative genetic
model is proposed to estimate the genetic control of
response of genotypes to these two kinds of environ-
ments. The model extends Gimelfarb’s additive-multi-
plicative model for genotype x environment interaction
by considering both macro- and microenvironmental
variation and the mechanistic basis of genotypic re-
sponse to a particular macroenvironmental factor. It is
further extended to estimate genetic correlations
between quantitative traits under the additive-multi-
plicative model. An example from a forest tree was used
to illustrate the application and power of the new
model. In many aspects, the model displays remarkable
advantages over the traditional analysis of variance
used to study genotype x environment interaction.

Key words Additive-multiplicative model -
ANOVA - Macroenvironment + Microenvironment -
Genotype x environment interaction

Introduction

Genotype x environment (G x E) interactions have
long been the object of much research by students in
plant breeding and evolutionary biology (Comstock
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and Moll 1963; Finlay and Wilkinson 1963; Via and
Lande 1985; Jinks and Pooni 1988; Gillespie and
Turelli 1989; Wu and Stettler 1997). Traditional analy-
sis of G x E is to use the two-way analysis of variance
(ANOVA) with which the effect due to interactions
between genotypes and environments can be estimated.
By making use of F-statistic calculated on the structure
of the mean squares, the significance of G x E inter-
action is further tested. If this effect is statistically
significant, this means that different genotypes respond
differently, or to different extent, to a change in the
environment (Caligari and Mather 1975) or that a spe-
cific difference in the environment has a greater effect
on some genotypes than on others (Falconer and
Mackay 1996). The imprecision of these two inter-
pretations on G x E interaction can be corrected by
partitioning G x E interaction variance into two com-
ponents, one due to heterogeneity of genetic variance
and the other to the lack of genetic correlation among
environments (Cockerham 1963; Wu and Stettler 1997).
It is important to distinguish between these two com-
ponents, because the former does not directly affect
selection decisions while the latter does.

Recently, the traditional ANOVA method has been
questioned for its application to analyzing G x E
interactions in the case where environment cannot be
specified (Gimelfarb 1994). There are two categories
of environmental variation: macro and micro (Allard
and Bradshaw 1964; Jinks and Pooni 1988; Wu 1997).
Macroenvironments, e.g., temperature, density, and nu-
tritional level, can be specified and, therefore, the
ANOVA method provides a general means for dissect-
ing genotype x macroenvironment interactions
(Perkins and Jinks 1973). On the other hand, this
method is less powerful to deal with interactions be-
tween genotypes and microenvironments, since it is
impossible to specify fluctuating microenvironments,
such as external stochastic errors or internal “acci-
dents” of an organism (Gavrilets and Hastings 1994).
In the existing studies, genotype x microenvironment
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interactions have been largely neglected. However,
given its major contribution to the total phenotypic
variance, this kind of interactions may be an important
force in the evolution of quantitative traits (Gavrilets
and Hastings 1994).

The ANOVA method cannot consider the biological
mechanisms of character development in varying
environments, as early observed (Lewontin 1957). In
general, response of genotypes to macroenvironments
follows some biological rule, which can be approxim-
ated by mathematical functions. Consider, as an
example, the response of the photosynthetic rate of
plants to irradiation. At low levels of irradiation,
photosynthetic rate respond proportionately to light
intensity, whereas photosynthetic rate can be reduced if
plants are over-radiated to the point of light saturation.
This relationship between photosynthetic rate and ir-
radiation has been described using a non-rectangular
hyperbolic function (Marshall and Biscoe 1980). From
the viewpoint of evolutionary biology, the relationship
like this is virtually the function for the shape of reac-
tion norms that describe the phenotypic expression of
given genotypes across some set of environmental
states (Gavrilets and Scheiner 1993; Van Tienderen and
Koelewijn 1994; Via et al. 1995).

In this paper, we propose an additive-multiplicative
model to handle G x E interactions in order to over-
come the two major limitations of ANOVA described
above. In agricultural studies, additive-multiplicative
models have been used to examine G x E interactions
(Zobel et al. 1988; Gauch and Zobel 1988, 1990; Gauch
1990; van Eeuwijk and van Eeuwijk 1995; van Eeuwijk
et al. 1995). However, the agricultural models generally
do not include microenvironmental interaction, nor do
they use mathematical functions to model the macroen-
vironmental gradient (e.g., Finlay and Wilkinson 1963).
We further extend the additive-multiplicative model
to estimate genetic parameters, such as broad-sense
heritability and genetic correlation between quantitat-
ive traits. A numerical example in a forest tree is used
to illustrate the application and power of the new
model.

The nonlinear model

Within an environment, the relationship between the phenotype of
an individual (P) and its genotype is described by a linear equation

P=G+E+]I, 1)

where G and E, are the main effects of genotype and microenviron-
ment (or random error), respectively; and I, is their interaction effect.
When the genotypes are reared in multiple macroenvironments, the
linear relationship of Eq. 1 can be generalized as

P=G+E.+I.+E +1 )

where E, and I, are the main effect of macroenvironment and its
interaction effect with genotype, respectively. Under the assumption
that the genotype is independent of the environment, the phenotypic

variance can be partitioned into its genetic, macroenvironmental,
genotype X macroenvironment interaction, microenvironmental,
and genotype x microenvironmental interaction variance compo-
nents

Ve=Ve+ Ve, + Vi, + Ve + Vi ©)]

However, using the traditional two-way ANOVA model, the last
two terms are mix estimated, i.e., the variance component of geno-
type x microenvironment (¥;,) cannot be separated from the micro-
environmental variance, because microenvironments involved
cannot be specified. We shall solve this problem by extending the
additive-multiplicative model of G x E interaction, as suggested by
Gimelfarb (1994).

Because no genotype can display its value independently of the
environment in which it is grown, the phenotype explained by the
genotypic effect virtually represents its contribution to the pheno-
type in this specific environment (Falconer and Mackay 1996).
Similarly, the effect of the environment on phenotype could be
different among individual genotypes, which means that the envir-
onmental effect should be interpreted as the contribution of the
environment to the phenotype of a particular genotype. When this
nature of gene and environmental action is taken into consideration,
the phenotype of an individual may be broken down more appro-
priately into the contributions rather than the strict effect by geno-
type and environment. In a mathematical term, this can be described
as

P=g+e+&tge+e+ (ge (4)

where g, e, and ¢ are the contributions to the phenotype by the
genotype, and macro- and microenvironment, respectively; and
parameters ¢ and {, which can each take any value from — oo to
+ o0, describe the interactive relationship between genotype and its
macro- and microenvironment, respectively. There is no interaction
if £ or { =0, whereas larger values of ¢ or ( indicate a more
multiplicative interaction. Thus, the contribution by genotype envi-
ronment interactions is represented as a multiplicative term of these
two variables. Clearly, an advantage of Eq. 4 is that it incorporates
interactions between genotype and microenvironment, which is not
possible with the ANOVA model. However, Eq. 4 is not still ad-
equate to reflect the biological mechanism of trait development over
distinct macroenvironments. Assuming that the environment-depen-
dent development of a trait can be approximated by a mathematical
function, Eq. 4 is changed as:

P=g+f(e)+ ige+e+ (ge %)

where f(e) represents a general function of some macroenviron-
mental gradient which is supposed to reveal the biological relation-
ship between the phenotypes and environments. To set an example,
we assume that the function is a second degree of polynomial in an
environmental factor, ie., f(e) = bf + ¢f* where b and ¢ are the
linear and quadratic regression coeflicients of response function of
genotypes to environmental gradients, respectively.

Assume that the genotypic, and macro- and microenvironmental
contributions are distributed independently of each other with the
mean and variance of g denoted as m, and v,, with the mean and
variance of e denoted as m, and v,, and with the mean and variance
of ¢ denoted as m, and v,. The phenotypic mean (mp) and the
phenotypic variance (Vp) of the trait can be derived from Eq.5
(Stuart and Ord 1987):

mp = my + bmy 4+ cmy2 + Emgm, + m, + {mym, (6a)
VP = Ug[l + (éme)z + (Cm«:)z] + ve(émg)z + Us[l + (Eymg)z]
+ Exvgve + (Pogo, + b2V, + V2 (6b)

where m, and V; are the mean and variance of the environmental
factor across macroenvironments, respectively; and m,2 and V2 are
the mean and variance of the square of the environmental factor



across macroenvironments, respectively. The phenotypic covariance
between a pair of traits (x, y) is expressed as

Wp,, = Wo (1 + &&yme me + Glome me) + we (Ec&ymy mg)
+ we, (14 &u&ymy my) + Exlywy, we, + Glywy, we
+ bxbny + CnyVfZ (6C)

where w,_, we  and w,  are the covariances of the genotypic, and
macro- and microenvironmental contributions between traits x and
y, respectively. The means of genotypic, and macro- and micro-
environmental contributions, and other parameters, b, ¢, &, and {, for
the two traits are expressed by the corresponding subscripts.

As microenvironmental contributions are suggested to result from
internal or external errors of an organism, it is assumed that they
follow a normal distribution with the mean set to zero without loss
of generality (by linear rescaling of the phenotypes). Thus, Eq. 6a can
be rewritten as:

mp = my + bmy + cms2 + Emgm, (7

It can be seen that the trait mean in a population is a function of
the mean of genotypic and macroenvironmental contributions.

Given a group of genotypically identical individuals, the
phenotypic variance of a character among them can be regarded as
the sum of macro- and microenvironmental variance of their geno-
type. If environment is strictly additive, this sum is determined only
by the variance of environmental contributions and, hence, it is the
same for any genotype. This is not true, however, if environment is
not additive. Consider a genotype i exposed to multiple macroen-
vironments in each of which the genotype is reared with replicates.
Because of the same genotype, the variance of genotypic contribu-
tion for genotype i is zero, i.e., v, = 0. Thus, the sum of macro- and
microenvironmental variances, i.e., phenotypic variance, of this
genotype is obtained as

Vei = ve(Emg;i)* + v[1 + ((mg;i)*] + b2V, + 2V p2 8)

where the mean of genotypic contribution for genotype i is ex-
pressed, from Eq. 7, as:

mpj; — bmy — cmy?
1+ ¢m,

My = (9)
where mp; is the mean phenotypic value of genotype i. Combining
Eqgs. 8 and 9, we obtain a nonlinear function with Vp; as the
dependent variable and mp;, my, my2, Vy, and V2 as independent
variables. All these dependent and independent variables can be
calculated from a real data set. Our focus now is on how to obtain
the solutions of seven unknown parameters, b, ¢, m,, &, {, v., and v,,
included in equations. It is found that these parameters can be
estimated by using the least squares fit of nonlinear regression model
in Egs. 8 and 9 to observations, Vp; on mpy;, my, mg2, Vy, and V2.
The SAS program for doing so is given as follows

PROC NLIN;
MODEL combining Egs. 8 and 9;

o+ o,

DER. b = — 2m(mp; — bm; — cmy2) Trmy? + 2bVy;
£2 2
DER. ¢ = — 2ms2(mp;; — bmy — cmfz)'% + 2cVy2;

& + (o,

DER. m, = 2&mp;; — bm; — cmp2)? 22— 2 -
C( P| f f) (1+gvmc)3

(1 + 2&me)éve + Pmev,

DER. & = 2(mp; — bm; — cms2)?+ ;
& = 2(mp, 2 12) T+ am)

Cv,

DER. { = 2(mp; — bmy — cm,2)? T e
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P 2
DER. v, = (mp;; — bmy — cmy2)* ((1%5%) ;

2
DER. v, = 1 + (mp;; — bm; — cm2)*- <(1+755me> ;

where the expression in the DER statement is not written in a form
valid for a SAS expression but should be so in a real application. The
sampling variances for the estimators of these parameters will also
be given in the OUTPUT of PROC NLIN. The variance of
genotypic contributions can be estimated by substituting the esti-
mated parameters into Eq. 6b:

_Ve— V(Emy)? — v [1 + ({my)*] — b*V; — V2
- U+ (Emo)” + (@m.) + Eve + Co,

Ug

The sampling variance of the variance of genotypic contributions is
estimated from the Taylor expansion on a ratio estimate and retain-
ing the first-order terms (Stuart and Ord 1987).

If the phenotypic covariance between a pair of traits, x and y, is
calculated for genotype , the procedure can be extended to estimate
the covariances of macro- and microenvironmental contributions
between the two traits. Given w, = 0, the phenotypic covariance of
genotype can be expressed, based on Eq. 6c, as:

WPW\i = Wexy(éxéyrﬁgx\irﬁyyﬁ) + sty(Cnymgthgy\i)
+ BXE,,Vf + CAXCAnyZ (10)

where ~ denoted the least squares estimator of parameters b, ¢, my;,
¢, and {. Unknown parameters, w,  and We,,, are estimated by
regressing Wp_j; and on m, ; and m, ); in the nonlinear form of Eq. 8.
The SAS program to calculate w, and w,_ is given:

PROC NLIN;
MODEL Eg. 10;

DER. w, = Exgy’ﬁg)\i'ﬁgyli;
DER. w,, =1+ E&yrig ity .

The sampling variance of We,, and W, can be read from the OUT-
PUT. After these two covariances are estimated, the covariance
of genotypic contributions between trait x and y is estimated using
Eq. 6c¢:

Wayy =

We,, —we (E&mymy) —we (1 + (Lmyg my ) — bib Vi + cxe, V2
(U + &&ymeme ) + GG + memy ) + E&ywe + Glwey,

The sampling variance of the covariance of genotypic contributions
between traits x and y is estimated from the Taylor expansion on
a ratio estimate and retaining the first-order (Stuart and Ord 1987).

The partitioning of phenotypic variance and covariance

In the statistical decomposition model of Eq. 2, the main genotypic
effect, G, is determined strictly by the genotype, whereas the main
macro- and microenvironmental effects, E, and E,, are determined
strictly by macro- and microenvironment, respectively. The sum of
G, E, and E, gives the least squares fit to the phenotypes in the
population. Hence, in order to obtain the main effects for a character
with phenotypic values determined by Eq. 5, it is necessary to find
functions G(g), E(e), and E'(¢) such that they deliver the minimum of
the integral

jjj[g +e+&ge+e+{ge—Glg) — Ele) — E'(©)]°

p(g9)g(e)q'(e)dg de de (1)
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under the constraints

J G(g)plg)dg = my,
J'E(g)q(g) de = m,, (12)

JE’(E)q’(s) de = m,,

where p(g), q(e), and ¢'(¢) are the distributions of the genotypic, and
macro- and microenvironmental contributions, respectively. Let us
consider the functions G(g), E(e), and E'(¢) in a linear form:

Glg) =og + B,
E(e) =vye + 0, (13)
E'(e) = ue + v.

It follows from Eq. 12 that
p =my — amy,
0= me — YMe, (14)

v =m, — um.

Substituting Egs. 13 and 14 into Eq. 11 and differentiating 11 with
respect to o, y, and u, we obtain the following equations:

LLJS(.@ —my)[(1 — a)(g — my) + (1 —)e —me) + (1 — u)(e — m,)
+ &ge + Lgelp(g)a(e)q'(¢) dg de de = 0,

LLL(E —m)[(1 — a)(g —my) + (1 — ) —me) + (1 — u)(e — m,)
+ &ge + Lgelp(g)ale)q'(¢) dg de de = 0, (15)

LLL(S —m)[(1 —a)(g —my) + (1 —p)(e —me) + (1 — w)(e — m,)

+ &ge + L{gelp(9)(e)q'(e)dg de de = 0.
After integration, we have:
v(1 — o + Eme + {m,) = 0,
vl — 7y + Emy + {m;) =0, (16)
v(1 —u + &me + {my) =0,
which yield:
=1+ Em+ {m,,
y=1+¢&my + (m,, 17)
u=1+ém,+ (m,.

Consequently, the main genotypic, and macro- and microenviron-
mental effects are:

G =g + &me + {m;) — & mgm, — (mgm,,
E.=e(1 + Emy + {m;) — & mgm, — {memy, (18)
E. = ?(1 + éme + Z.,,W‘q) - é memg; — Cmgmg.

The interaction effect between genotype and environment is then
calculated by substituting the sum of G, E,, and E, from the right

side of Eq. 4:
I= f[mgme + ((} - mg)(e - me)] - éme(8 - me)
+ {mgm, + (g — my)(e — m,)] — {m.(e — m,) (19)

In fact, Eq. 19 represents the sum of genotype X macroenvironment
and genotype x microenvironment interactions. However, according
to the definition of ¢ and (, the first two terms with ¢ can be regarded
as the genotype x macroenvironment interaction (I.) and the last
two terms with { as the genotype x microenvironment interaction
(I;). Since the mean of microenvironmental contribution is set to
zero, Eqs. 18 and 19 are rewritten as:

G = g(1 +Em) — Emyme,
E.=e(1 4+ &my) — Emgm,,

Eo=o(l + Eme + m) (20)
I, = E[mgme + (g — my)(e — me)] — Emee,

I, =g — my)e.

The variance components of various factors in Eq. 2 can be obtained
following the above equation:

Ve = vy(1 + Eme)?,

Vi, = ve(1 4 &my)?,

Vi, = v:(1 + Em, + {my)?, (21)
Vi, = 040:% + v:(Eme)?,

Vi, = v,0.0%.

If all parameters at the right side of Eq. 21 are distributed indepen-
dently of each other, the sampling variances for these variance
components are derived as

V(Ve) = V(o)L + Eme)* + V(EV (me)]?

+ V(©V(me)[(vy)® + V(I[2(1 + Eme)* + VOV (me)]
V(Ve,) = V(o) [(1 + Emy)* + V(E)V(my)]?

+ VEOV(my)[(ve)* + V(we)I[2A1 + Emg)* + V(E)V (my)]
V(Vg,) = V(o) [(1 + Eme + {my)® + VOV (my) + V)V (m,y)]?

+ [@)? + V@IV (me) + VOV (m,)]

[2(1 + Eme + {mg)® + VOV (me) + VOV (my)]
V(V1,) = (vl V(OL28 + V(O] + V(o) V(ve) [ + V(E)]?

+ [(Eme)* + VOV (me)]?

+ VOVm)[(v:)* + V() I[2Eme + V(E)V(m,)]

V(1) = (00 VIOL20 + V(O] + V(o) V() [E+ V(O]

where V(") denotes the sampling variances of parameters. The broad-
sense heritability of a quantitative trait is expressed as:

T Vet Ve, + Ve + Vi, + V]

2

(22)

which indicates that in the presence of G x E interaction (¢ and
{ #0), the broad-sense heritability of a trait is determined not only
by the variances of the genotypic, and macro- and microenviron-
mental contributions, but also by the means of the genotypic and
macroenvironmental contributions.



Similarly, the phenotypic covariance between traits x and y can
also be broken down into the corresponding covariance compo-
nents:

W, =wg (1 + &eme )(1 + Eme),

Wee,, = We, (1 + &emy (1 + Eymy),

Wie,, = we (L + Eeme, + Lamy )(1 + Eyme, + (ymy,), (23)
Wie,, = Wy W, Ex&y + Wy, Cxyie M,

Wie,, = Wy We 0Ly

Assuming the independence among &y, &y, m,, and m, , the sampling
variance of the genetic covariances between traits x and y can be
derived as:

V(W,,,) = (1 + Eame )2 (1 + Eyme ) V(w,,,)
+ VEIV(me )V (E)V (e, ) [(wy,,)* + V(wg,)]
The genetic correlation between the two traits is expressed as

w
G (24)

r 9xy /_ch /_VGy

It can be seen that genetic correlation is only a function of the mean
and variance of genotypic contribution for the corresponding traits
even when G x E multiplicative interactions exist. The sampling
variances of broad-sense heritability and genetic correlation are
approximated by the Taylor expansion on a ratio estimate and
retaining the first-order terms (Stuart and Ord 1987).

Experimental data

We provide a numerical example of G x E interactions
in a F, family of 375 genotypes produced by inter-
crossing two poplar species, Populus trichocarpa and
P. deltoides (Wu and Stettler 1997). In spring 1993, the
F, hybrids were planted using rooted cuttings in two
macroenvironments, one east of the Cascades in Board-
man, Oregon, the other west of the Cascades in the
lower Columbia River Valley near Clatskanie, Oregon.
Both plantations were laid out in a randomized com-
plete block design with three (Clatskanie) or four
(Boardman) clonal replicates and two-tree plots at
a spacing of 1.5 x 3.0 m and surrounded by two border
rows. At Boardman, the fourth replicate received a dif-
ferent watering regime from the other three from year 2,
and so it was excluded from all analysis of this example.

Two plantation environments differ markedly.
Boardman (117°6'W, 45°42'N) has a continental
climate, and Clatskanie (123°40'W, 46°6N’) is in the
coastal zone with a strong maritime influence. During
the growing season (April-October) of 1994, the aver-
age monthly temperature was 18.5°C at Boardman,
14.3°C at Clatskanie. The average solar irradiance in
that year at Boardman was 430 Wm ™2 day ', com-
pared to 280 Wm ™2 day ! at Clatskanie. Other envir-
onmental factors that differ between the two sites
include annual precipitation, soil water potential, soil
fertility, and wind movement. However, in this
example, we will focus on the influence by temperature
and irradiance.
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We calculated the trait means and phenotypic
variance of second-year (1994) stem volume index
based on all clonal replicates in the two macroenviron-
ments for each genotype. The phenotypic variance for
a genotype is composed of two components: macroen-
vironmental variance and microenvironmental vari-
ance within each macroenvironment. Using the
nonlinear function, described by Egs. 8 and 9, to regress
the phenotypic variance of a single genotype on its
phenotypic mean and temperature or irradiance, we
finally obtained the genotypic, macroenvironmental,
genotype x macroenvironment interaction, microen-
vionmental, and genotype x microenvironment interac-
tion variances for volume index when these two
environmental parameters were respectively incorpor-
ated into the model of G x E (Table 1). In this example,
we estimated the macroenvironmental variance, al-
though the two macroenvironments used were not ran-
domly sampled. It was found that while the genotypic,
microenvironmental, and their interaction variances
were similar between the two incorporating models, the
macroenvironmental and genotype x macroenviron-
ment interaction variances showed larger values in the
temperature- than irradiance-incorporated model. This
makes sense when the ¢ values, characterizing the
strength of genotype x macroenvironment interactions,
are compared. In the temperature-incorporated model,
the ¢ value was much larger than that in the irradiance
model. However, the { values, which characterize the
strength of genotype x microenvironment interactions,
were quite close between the two models. For these

Table 1 The variance components (+ SE) due to the genotypic (V),
macroenvironmental Vg, genotype x macroenvironment V;,, micro-
environment Vg, and genotype x microenvironment interaction ef-
fects Vg, in second-year stem volume index of a F, family of P.
trichocarpa and P. deltoides. All these values were, respectively,
estimated from the additive-multiplicative model incorporating the
temperature and irrandiance differences between two plantations
east and west of the Cascade Ranges, with a comparison to the
traditional ANOVA method

Method The temperature The irradiance
model model

Additive-multiplicative

Ve 20.97 +2.51 21.53 +2.59

Ve, 19.25+ 1.74 11.35 + 1.07

Vi, 9.33 +0.82 470 +0.33

Ve, 4.67 +0.57 3.51+031

Vi, 13.42 4+ 1.40 12.74 + 1.15

14 12.11 + 1.09 7.25 +0.62

4 343 +0.25 2.88 +0.20

H? 0.31 +£0.11 0.40 +0.12

ANOVA

Ve 16.37 +2.12

Ve, 23.30 + 3.57

Vi, 8.19 +0.88

Ve, 1511 4+ 1.23

H? 0.26 +0.10
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reasons, the broad-sense heritability (H?) was larger for
volume index based on the irradiance- than on the
temperature-incorporated model. The two models in-
corporating a specific environmental variable, espe-
cially temperature, showed a larger H* level than that
obtained from the traditional ANOVA method (Wu
and Stettler 1996). It was found that from both temper-
ature- and irradiance-incorporated models the vari-
ance due to genotype X mircoenvironment interactions
was much larger than the pure microenvironment vari-
ance in second-year volume growth of poplar hybrids
(Table 1). However, the interaction variance of this
kind cannot be detected using the traditional ANOVA
model.

Discussion

Genotype x environment interactions play an impor-
tant role in evolution and plant and animal breeding.
The analytical method to deal with this phenomenon is
limited to the application of traditional analysis of
variance. As pointed out by Gimelfarb (1994), this
method is not adequate to describe the variation in
response to microenvironments that cannot be speci-
fied and the mechanisms of gene and environmental
action as well. Another limitation of ANOVA applied
to the analysis of G x E interaction is that the method
can only detect the effect strictly by genotype and
environment. In other words, it cannot manipulate the
mechanistic relationship between the genotype and its
environment.

Gimelfarb (1994) suggested the additive-multiplica-
tive model to divide the phenotype of an individual into
the genotypic, environmental, and genotype x environ-
ment interaction contributions. Gavrilets (1986) inter-
preted the three contributions in the model as the
environment-dependent effect of genes, the effect of
a change in the composition of genes, and the effect of
a change in the activity of genes, respectively. We gen-
eralize Gimelfarb’s model to allow both macro- and
microenvironments and their interactions with geno-
type. Macro- and microenvironments should be differ-
entiated because they influence the phenotype of
a character in different ways (Falconer and Mackay
1996). Whereas genotypes always respond to macroen-
vironments in a predictable manner, the microenviron-
mental sensitivity is unique for different individuals of
the same genotype. Based on this variety of facts and
ideas, we use a nonlinear function (i.e., second degree of
polynomial) to fit the contributions of the macro-
environment. Other response functions can also be
employed but should be based on the empirical rela-
tionship of the phenotype and environmental factors.
For example, a non-rectangular hyperbolic equation
could be more appropriate when one attempts to exam-
ine the response of genotypes to irradiance for the
photosynthetic rate of plants. Simulations on the influ-

ence of other environmental factors, such as temper-
ature, moisture, and nutritional level, on the phenotype
have also been reported in the current literature (e.g.,
Namkoong et al. 1992). As demonstrated from an
example in poplar, the new method can provide a bet-
ter insight into the mechanisms of interactions between
genotype and a specific environmental factor.

Our model is further extended to the case of multi-
trait correlation. Despite its importance, how trait cor-
relation is influenced by G x E interactions receives few
concerns. There has been much evidence for the change
of trait relationships over environments (Schlichting
1989). The present model will make it possible to study
the genetic mechanisms underlying developmental in-
tegration.

The prerequisite of the application of the present
method is to have genetically identical individuals for
each genotype. It is possible to produce such indi-
viduals experimentally. In annual plants and animals,
these materials include inbred lines or isogenic lines; in
some long-lived forest trees, clones from cuttings and
rootings.

Most previous papers on G x E interactions were
restricted to the context of plant and animal breeding
(Finlay and Wilkinson 1963; Eberhart and Russell
1966; Pani and Lasley 1972; Wescott 1986). Disputes
have arisen in the past about the potential role of
interactions between genotype and environment in the
evolution of quantitative traits (Bradshaw 1965; Via
and Lande 1985; Scheiner et al. 1991; Gomuliewicz and
Kirkpatrick 1992; Via 1993). Now G x E interactions
can be measured more accurately, and their contribu-
tions to phenotypic variance specified, thereby allowing
more general theoretical and empirical approaches to
this question.
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